import jdk.incubator.vector.DoubleVector; import java.util.Arrays; import java.util.List; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicReference; // Release Candidate Version, package will change in Release Version, true for JDK 23 import jdk.incubator.vector.DoubleVector; import jdk.incubator.vector.VectorOperators; import jdk.incubator.vector.VectorOperators.Operator; import jdk.incubator.vector.VectorSpecies; import static jdk.incubator.vector.VectorOperators.ADD; public class SimpsonsRuleVectorised { private static double third = 1.0/3.0; private static int THREADS = 16; public static double integrateThreaded(double a, double b, int N, DoubFunction f, double ...params) { // precision parameter double h = (b - a) / (N - 1); // step size ForkJoinPool pool = new ForkJoinPool(THREADS); double d[] = new double[N]; for(int i=0; i{ double mul = ii%2==0? 2*third: 4*third; if (ii==0) { mul = third; } if (ii==N-1){ mul = third; } double mul1 = mul; double x = a + h * ii; double fi = f.eval(x,ii, params); if (Double.isNaN(fi) ){ System.err.println(f.getClass().getName() + "IS NaN at "+x); } d[ii] = mul1*fi; }); } try { pool.shutdown(); if (!pool.awaitTermination(1, TimeUnit.HOURS)){ pool.shutdownNow(); } } catch (Exception e){} DoubleVector doubleVector = DoubleVector.fromArray(DoubleVector.SPECIES_64, d, 0); double sum = doubleVector.reduceLanes(ADD ); return sum * h; } public static double integrate(double a, double b, int N, DoubFunction f, double ...params) { // precision parameter double h = (b - a) / (N - 1); // step size double fa = f.eval(a,0, params); double fb = f.eval(b, N-1, params); if (Double.isNaN(fa) ){ System.err.println(f.getClass().getName() + "IS NaN at "+a); } if (Double.isNaN(fb)){ System.err.println(f.getClass().getName() + "IS NaN at "+b); } // 1/3 terms double sum = third * (fa + fb); // 4/3 terms for (int i = 1; i < N - 1; i += 2) { double x = a + h * i; double fx = f.eval(x,i, params); if (Double.isNaN(fx)){ System.err.println(f.getClass().getName() + "IS NaN at "+x); } sum += 4.0 * third * fx; } // 2/3 terms for (int i = 2; i < N - 1; i += 2) { double x = a + h * i; double fx = f.eval(x,i, params); if (Double.isNaN(fx)){ System.err.println(f.getClass().getName() + "IS NaN at "+x); } sum += 2.0 * third * fx; } return sum * h; } public static double integrateConsecutive(double a, double b, int N, DoubFunction f, double ...params) { // precision parameter double h = (b - a) / (N - 1); // step size double fa = f.eval(a,0, params); if (Double.isNaN(fa) ){ System.err.println(f.getClass().getName() + "IS NaN at "+a); } // 1/3 terms double sum = third*fa; // 4/3 terms boolean isOdd = true; for (int i = 1; i < N - 1; i += 1) { double x = a + h * i; double fx = f.eval(x,i, params); if (Double.isNaN(fx)){ System.err.println(f.getClass().getName() + "IS NaN at "+x); } if (isOdd) { sum += 4.0 * third * fx; } else { sum += 2.0 * third * fx; } isOdd=!isOdd; } double fb = f.eval(b, N-1, params); if (Double.isNaN(fb)){ System.err.println(f.getClass().getName() + "IS NaN at "+b); } sum = sum+ fb*third; return sum * h; } public static void main(String args[]){ // Roots of polynumerial to integrate List in = Arrays.asList(-0.9, -0.8,-0.7, -0.6,-0.5, -0.4, -0.3, -0.2, -0.1, 0, .1,.2,.3,.4,.5, .6,.7, .8, .9 ); DoubFunction func = new DoubFunction() { @Override double evalInner(double x, double[] params, int i) { return in.stream().map(y->y.doubleValue()-x).reduce(1.0,(a,b)->(a*b)); } }; double consec=0; long startConsec = System.currentTimeMillis(); for(int i=1;i<1000; i++) { consec = integrateConsecutive(-1, 1, 100000, func); } double timeConsec = (System.currentTimeMillis() - startConsec)/1000.0; double standard=0; long startStandard = System.currentTimeMillis(); for(int i=1; i<1000; i++) { standard = integrate(-1,1,100000,func); } double timeStandard = (System.currentTimeMillis() - startStandard)/1000.0; double threaded=0; long startThreaded = System.currentTimeMillis(); for(int i=1;i<1000; i++) { threaded = integrateThreaded(-1, 1, 100000, func); } double timeThreaded = (System.currentTimeMillis() - startThreaded)/1000.0; System.out.println("Standard Integrator: "+standard+" time taken: "+timeStandard+" seconds"); System.out.println("Consecutive Integrator: "+consec+" time taken: "+timeConsec+" seconds"); System.out.println("threaded Integrator: "+threaded+" time taken: "+timeThreaded+" seconds"); } } class AtomicDoubleLocal77 { private AtomicReference value = new AtomicReference(Double.valueOf(0.0)); double getAndAdd(double delta) { while (true) { Double currentValue = value.get(); Double newValue = Double.valueOf(currentValue.doubleValue() + delta); if (value.compareAndSet(currentValue, newValue)) return currentValue.doubleValue(); } } }
Saturday, 19 October 2024
A Vectorised Simpsons Rule for JDK 23
If you are doing numerical integration in Java, try this code on the latest JDK 23, it using the
new Vectorisation methods for a faster result.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment