Tuesday, 10 January 2012

Dark Energy and Expansion 101

BDOA wrote this over at Science 2.0 in reply to an articles on the Einstein plus Higgs expansions paradox. How can space expanded when there's an Aether (except relatisticly invarent) like field of Higgs particle in it. I'll need to dumb this done to the level of the readership.

Space doesn't expand? next you'll be telling me that Hubble was a bungling detective.

Its a good paradox though. Is there an energy cost of free space, as your expand the universe. Especially if that free space has got a 246 GeV Higgs field made out of 126 GeV field particles field in it. Doesn't that Higgs field both cost or gain energy and induce a big cosmological constant. Its like gravity doesn't care about the Higgs field.

Supersymmetry says the energy of the Vacuum is zero. that one of the reasons that physicist like it so much. Add up the vacuum energy from all the fermions and all the bosons and you get zero. of course once you break supersymmetry, and it is broken or they'd be a scalar electron or same mass turning all our molecules into superfluids, all that Vacuum energy comes back, at the breaking scale.

The other pointer, I've seen, is that in a universe with just gravity and photons or massless particles (not sure if this continues with non-abelian or interacting particles), the overall energy is also aways zero. That one of few cases where a definition of global total energy actually works in general relavity, most of the rest of the time they just isn't single definition of energy that works.

The point of the Higg mechanism is a set of massless fields can be redefined as set of massive fields by renaming what you call the particle, then building a Higgs field shouldn't effect the gravity, and the contribution to cosmological constant is zero. What about all the interaction terms though which I question marked above, they need to be proved to not make a difference to the gravity. Begin with a literature search please, and add to a sane distance beyond the current state of the art. Perphaps its already solved, but I tend to look out for that kind of stuff at arXiv and haven't seen it yet.

Now dark energy, that's trickery. Sasha said, the more empty space there is, the more the universe accelerates. That's dark energy with a phantom equation of state, w<-1. If w=-1 is just like a cosmological constant. The observations of dark energy tell us that is w<-.75 and it might even have only switched one recently (six million years, z<2, (z being the redshift factor, used for distance and time in most dark matter literature, which of course get new measurement regularly). Very light particles with very strong self interaction, strong enough to pair create more of themselves would be a good candidate for dark energy for w near to but above minus one. As a model, I gave neutrinos a force like electromagnetism (but not em) between them, expanded the system, and found w to be approximately -17/18 and turned on about z=2.6. There are also good published paper on a QCD ghost dark energy, which only uses standard QCD on a curved background in general relavity (now that really hard math) , but that has w~.75 and turns on around z=2. But it does seem to generate dark energy like expansion from the QCD condensate. The QCD condensate which is another aether like field, that physicist have put in empty space and comes about just breaking the symmetry of the axial color due to the axial anomaly. Can you make a Higgs field from a condensate like the QCD one. Yes, that's called a techicolour Higgs, lots of new physics paper going on there as well. BDOA
Space doesn't expand? next you'll be telling me that Hubble was a bungling detective.

Its a good paradox though. Is there an energy cost of free space, as your expand the universe. Especially if that free space has got a 246 GeV Higgs field made out of 126 GeV field particles field in it. Doesn't that Higgs field both cost or gain energy and induce a big cosmological constant. Its like gravity doesn't care about the Higgs field.

Supersymmetry says the energy of the Vacuum is zero. that one of the reasons that physicist like it so much. Add up the vacuum energy from all the fermions and all the bosons and you get zero. of course once you break supersymmetry, and it is broken or they'd be a scalar electron or same mass turning all our molecules into superfluids, all that Vacuum energy comes back, at the breaking scale.

The other pointer, I've seen, is that in a universe with just gravity and photons or massless particles (not sure if this continues with non-abelian or interacting particles), the overall energy is also aways zero. That one of few cases where a definition of global total energy actually works in general relavity, most of the rest of the time they just isn't single definition of energy that works.

The point of the Higg mechanism is a set of massless fields can be redefined as set of massive fields by renaming what you call the particle, then building a Higgs field shouldn't effect the gravity, and the contribution to cosmological constant is zero. What about all the interaction terms though which I question marked above, they need to be proved to not make a difference to the gravity. Begin with a literature search please, and add to a sane distance beyond the current state of the art. Perphaps its already solved, but I tend to look out for that kind of stuff at arXiv and haven't seen it yet.

Now dark energy, that's tricky. Sasha said, the more empty space there is, the more the universe accelerates. That's dark energy with a phantom equation of state, w<-1. If w=-1 is just like a cosmological constant. The observations of dark energy tell us that is w<-.75 and it might even have only switched one recently (six million years, z<2, (z being the redshift factor, used for distance and time in most dark matter literature, which of course get new measurement regularly). Very light particles with very strong self interaction, strong enough to pair create more of themselves would be a good candidate for dark energy for w near to but above minus one. As a model, I gave neutrinos a force like electromagnetism (but not em) between them, expanded the system, and found w to be approximately -17/18 and turned on about z=2.6. There are also good published paper on a QCD ghost dark energy, which only uses standard QCD on a curved background in general relavity (now that really hard math) , but that has w~.75 and turns on around z=2. But it does seem to generate dark energy like expansion from the QCD condensate. The QCD condensate which is another aether like field, that physicist have put in empty space and comes about just breaking the symmetry of the axial color due to the axial anomaly. Can you make a Higgs field from a condensate like the QCD one. Yes, that's called a techicolour Higgs, lots of new physics paper going on there as well.

Wednesday, 4 January 2012

Hiding a Z'

Just five days ago I posted about results on how the Higgs Boson decayed, and suggested extra pairs of vector like quarks to make the photon signal match. Since then a paper by Radovan Dermisek, Sung-Gi Kim, Aditi Raval has come out showing that a Z' hiding very near in mass to the standard models Z (the neutral particle of the weak force), solves the problem of the forward backward asymmetry in bottom quark creation. The Z' is around 92.5 GeV (just 1GeV more missing than the ordinary Z), interacts with right handed button quarks, and vector like heavy down quarks. Such a particles seem to fit all existing measurement, and improve the fit for forward backward asymmetry, they also need a 0.005 coupling to left handed electron to fit data.

I'm liking this because I need the extra pair of quarks if the axial force is going to exist. When a proton reversing its spin, it axial force charge shouldn't reverse, and that means its right handed version at the same mass can't be the ordinary P reversed quark. That P reverse quark must also exist though and have a different mass. The Higgs decay signal and confirmation of the Z' boson, then are very helpful to the idea of an axial force.

Saturday, 31 December 2011

LHC Higgs Boson 125 GeV, and not standard model

On December the 13th 2011, the LHC released the first ever figures showing a Higgs Boson. This the particle (or set of particles) which give rise the mass of all the elementary particles in the universe. The signal was only around 3 sigma, after 5 femtobarnes of collisions, and woundn't ordinarily have been reguards has a proof of exists of the particle, except for the fact the physicists where already so sure that a Higgs Boson does exist. But the Higgs Boson they found does look like one from either the standard model or supersymmetry. The branching ratios for the different decays are different from the predicted values. According to the theory, the rate of the Higgs decay to a particular particle should be proportional to the mass of that particle. Instead CMS found

$$ σ(H) x {B(H → bb)} / {σ(B_{sm})} ∼ 0.5 $$
$$ σ(H) x {B(H → ττ)} / {σ(B_{sm})} ∼ 1 $$
$$ σ(H) x {B(H → γγ)} / {σ(B_{sm})} ∼ 1.7 $$
$$ σ(H) x {B(H → WW)} / {σ(B_{sm})} ∼ 0.6 $$
$$ σ(H) x {B(H → ZZ)} / {σ(B_{sm})} ∼ 0.5 $$

A factor of a half to the electroweak bosons, and ordinary quarks. About 1.7 for electromagnetic radiation and the standard factor for leptons. If you look back at Axitronics you'll find we quoted a prediction for a mirror-matter Higgs from Robert Foot, for the Mirror-Matter model, that predicted a factor of a half for Higg Boson branches across the board. Well the data we got is similar to that for more complicated, can we find a model to fit it. In fact the data, seems to match my E6 model. Which has as well as 15 particles of the standard model, and additional 12 vector-like quarks in the group.

The number of Leptons is the same so tau figures are identical. This Higgs would decay equally to either the quarks in the 12 or the 15 of E6, so the figure for bottom quarks would be half. There would be an additional W and Z just for the decays to the vector like 12 of E6, so again this figure would be a half. Finally the photonic decays (found by summing the squares of the charges of any pair of particles a Higgs could produce which then annihilate to a pair of photons is.

$$γγ = 3 generations * ( ee + 3 colors * [ dd +uu + DD+ UU])$$
$$B(γγ) = 3 + 9 * (1/9 + 4/9) = 8 [Standard Model] $$
$$B(γγ) = 3 + 9 * (2/9 + 8/9) = 13 [E6 (12+15)] $$

So $$B(γγ) = 1.625$$ Very close the observed figure. Including the normal W its 14/9 or 1.555. Finally if (and we expect one) there's any extra leptophobic right handed W and Z in E6, that will change to 1.666, the closest to the CMS figure.

During 2012, the amount of data with triple, and the mass and branching ratios will get much more accurately. The cross-section compared with the standard model will be known, and we might start seeing invisible decays to mirror matter or SUSY particles, so a deeply interesting year to come for particle physics. The Higgs Boson for a model with additional vector like quarks has been looked at byChacko et al, and would mean SUSY is unnecessary for stabilizing the Higgs Boson mass all the way up to 5+ TeV, so SUSY might well not be found in the 7TeV LHC runs.

Finally the Higgs might be composite, in fact if the color interaction between normal and vector-like quarks, is double the strength of the normal interaction, then these combinations have the right sort of energies for technicolor stuff composites to make up the Higgs.

Wednesday, 28 December 2011

Axitronics Isn't Moving

I'm now writing on Science 2.0 as well as this blog, at science 2.0 I may get actually readers, but I decided to right columns in both places. The reason being that Science 2.0 is general science site suitable for physics that is generally believed to be true. So when I write about my own ideas which may or may not be truth physics I'll place them here.

Tuesday, 27 December 2011

Axial force the lost years

The key discoveries in the Axial force actually where done in time period 1970 to 1990, the period before the Internet and exist on paper in science libraries for journals at the time.So when I wrote a paper on the Axial force, it ended up in Vixra the crank science Internet library, because not one person would give me an endorsement for using ArXiv's the mainstream science internet library. Somewhere in lost papers lives or dies the reasons thought at the time, why and axial can't exist. It cannot exist between electrons because of the Axial Anomaly as calculate by Alder. I think it can exist because its adds symmetry, and allows us to explain several so far unexplained facts. John Ellis (Current Head of Cern) paper, think it could exists between neutrinos with a Lifshifz factor fixing a background metric to explain why neutrino travel faster than light. An axial force may exists weather or not neutrino travel faster than light. Somewhere in does Journal are a few papers on the neutrinos with or without an Axial force. I'm going to have to rejoin the British Library to get access to the journals at the time, and scan them onto camera, read them there, to know the thinking on the Axial force from that time period.

Thursday, 24 November 2011

Axitronics Is Moving



I'm now posting over at Science 2.0

Tuesday, 25 October 2011

Axial force and Mirror Matter: Stellar Formation

There are two controversial theories I often write about here: The first, The Axial Force, a force possible between neutrinos which have opposite charges on left and right handed particles. Matter or anti-Matter doesn't seem to matter to the axial force. This follows from the CPT theorem. Combining the three operations, C (swapping matter and anti-matter), P (swapping left and right), T (reversing the direction of time, or equivalently the velocities of all particles), must result in no change to any picture of what has happened. Since most diagrams of an interactions are inverted by time reversal, either C or P but not both are also reversed. I've documented the Axial force in the paper linked from my blog, written here often about its consequences. As far as I know I'm the only current active researcher in the axial force, although the idea may date back to the 1970s. I happen to think the axial force will lead to a good theory of dark energy.

The second theory I often report on is Mirror Matter. Mirror Matter theory, posits a second of copy of mirror versions of all the known particles. Its was introduced because of the bizarre fact that weak nuclear force, between known particle, always acts in a left handed fashion. If there is a righted handed weak force its force carrier is very heavy, to heavy to have been observed. Mirror Matter solves restores the symmetry because its weak force is right handed. The theory also gives a good candidate of dark matter and fitting in with the recent observations from DAMA, COGENT. There are a number of researchers working on Mirror Matter, although only a minority, including Robert Foot and Paulo Cirarcelluti

So what happens between the two theories, are they compatible, indeed do they together lead to further explanations of the universe? Assuming both the axial force and mirror matter are real, we have eight copies of every particle, Matter versus Anti-Matter, Left-Handed versus, Right-Handed, and Mirror versus Ordinary Particles. The Known forces are also copied, with an electromagnetic force, and an mirror-electromagnetic force. Because the mirror-electromagnetic force is invisible to ordinary particles, dark matter stays dark. Is they're a also a mirror axial force. Quite possibly, if the standard model plus axial force, works, then so would a mirror copy. But what more interesting if you combine the axial and the mirror axial force, you can mixed them produce two copies, A+A' and A-A'. We may assume that A-A' breaks and gains an mass, while the total axial force remains massless. If in ordinary matter right handed neutrinos are heavy, then in the mirror world left handed neutrinos are heavy. If the heavy neutrinos and mirror neutrinos are bound by some interaction to a heavy composite particle, this is exactly the breaking we'll see. We'd also see a split in mass between to the ordinary light neutrinos and they mirror partners, these could also would mix, to form a very light set of neutrinos and a second set in the keV range, that would decay down to the lightest version.

A Consequences of add the axial force to the mirror matter model is then, we'd see only 3 light neutrinos at the time of nucleosynthesis, saving mirror matter theory from over counting the light of masses number of degrees of freedom, as reported below.

One problem with the mirror matter theory is that although mirror and ordinary matter may both make up a galaxy, when it comes to individual stars or planets we don't seem to see mixed objects containing varying amounts of each. What separates the two forms of matter> Gravity should attract both equally. I have thought of an effect, that would lead to the separation of ordinary and mirror matter. Imagine a collapsing cloud of gas, containing a mix of ordinary and mirror matter in some proportion. As it condenses it will be resisted by the Fermi pressure of the neutrinos needed to cancel out the axial force of the most populous gas (normal or mirror), at some stage the Fermi energy will rise above the mass of the a sneutrino or vectrino (a light supersymmetric boson carring the axial force), at this stage the gas will pair produce the vectrinos the with the opposite charge to the most populous gas which will rapidly condense, the vectrinos matching the less populus gas will stream out of the area carrying the less populous gas with it. This would lead to visible outflows of gas in interstellar clouds forming stars. These are indeed observed, even from area with no visable protostar, and called Herbig-Haro objects.

The shared axial force also helps explaining the different proportions of mirror and ordinary matter. Observation show that there is four to five times as much dark matter as ordinary matter.
We might expect equal proportion of mirror and ordinary matter. However with the A-A' axial force broken, we will have two species of heavy neutrinos, mirror plus ordinary, and mirror minus ordinary with some mass difference between the two. The heavy state would then decay to the lighter version, leaving an differing total of mirror and ordinary states, depending on the decay rates and branching ratios to matter and anti-matter.

It would seem that the axial force and mirror-matter theory, work well together aiding each other
to produce an nearly complete theory of the universe, together explaining both dark matter, dark energy, the breaking of parity, and predominance of matter over anti-matter.

Finally It is possible that mirror matter may be directly detected soon, in Higgs experiments. Robert Foot et al, have speculated that recent signs of a Higgs boson at the Tevetron but with half its expected cross section, may be due to Higgs mirror Higgs mixing, leaving a summed state around 140GeV, and a differenced state around 120GeV. Both states would have half the usual cross section and decay half the time in detectable particles, and half the time into mirror matter which would show up in the cross sections.